

Org. Chem. Res., Vol. 7, No. 2, 166-175, July 2021.

DOI: 10.22036/org.chem.2022.316963.1268

Synthesis of Pyridopyrimidine-Indole Hybrids Using γ-Fe₂O₃@HAp@PBABMD@Cu as Efficient Magnetic Nanocatalyst

N. Haghgoo, M. Mamaghani*, E. Saberikhah and R. Hossein Nia

Department of Chemistry, Faculty of Sciences, University of Guilan, P. O. Box: 41335-1914, Rasht, Iran (Received 26 November 2021, Accepted 7 February 2022)

A novel and practical method for the synthesis of pyridopyrimidine-indole hybrids, using a three-component reaction of thiouracil or 6-amino-*N*,*N*-dimethyluracil, various aryl aldehydes and 3-cyanoacetyl indole in the presence of a green heterogeneous nano-catalyst γ -Fe₂O₃@HAp@PBABMD@Cu was developed. This protocol furnished the desired products in high yields (82-95%) and lower reaction times (18-40 min).

Keywords: Pyridopyrimidine, 3-Cyanoacetylindole, 6-Amino-N,N-dimethyluracil, Aanocatalyst, y-Fe2O3@HAp@PBABMD@Cu

INTRODUCTION

Hybrid heterocycles play an important role in bioactive compounds and drugs. pyridopyrimidines, in particular pyrido[2,3-d]pyrimidines, are the most important heterocycles that play a special role in many drugs and bioactive compounds. Figure 1 shows some examples of bioactive piridopyrimidines. Many of these compounds display anti-inflammatory [1], antibacterial [2], antiviral [3], diuretic, analgesic [4], anticonvulsive [5,6], antipyretic [7], antitumoral [8], cardiotonic [9,10], antihistaminic [11], bronchiodilator [12] and bactericidal [13] activities, and also act as a cyclin-dependent kinase 4 inhibitor [14]. A number of multi-component methods have been reported for the synthesis of pyridopyrimidines especially pyrido[2,3d]pyrimidines in our recent review[15]. The indole nucleus is also a known heterocycle with biological and medicinal properties [16]. Compounds containing indole show antibacterial and antifungal activity [17]. Therefore, it would

be useful to design a system that combines bio-labilenuclei such as indole and pyridopyrimidine in a molecular framework.

On the other hand, the catalyzed reactions of transition metals are the most attractive protocols for the synthesis of heterocycles. Among the transition metal catalysts, nano particles of magnetic iron oxide (Fe₃O₄ and γ -Fe₂O₃) have been found to be effective and attracted much interest because of their unique properties, such as high surface-tovolume ratio, superparamagnetic, greater surface area, sizes, shapes, sustainable nature, nontoxicity, inexpensive, environmentally benign and simple separation methodology [18-23]. The most common surface modification method to conjugate the organic or inorganic materials onto the surface of iron oxide nanoparticles is coating method. This protocol prevents the oxidation and agglomeration of iron oxide nanoparticles and allows for further functionalization [24]. The physicochemical properties of iron oxide nanoparticles are improved by functionalization, and they become ideal candidates for the field of biomedicine and catalysis.

We have recently reported efficient and eco-friendly

^{*}Corresponding author. E-mail: m-chem41@guilan.ac.ir

Haghgoo et al./Org. Chem. Res., Vol. 7, No. 2, 166-175, July 2021.

Fig. 1. Some bioactive piridopyrimidines.

procedures for the preparation of indole-pyrido[2,3*d*]pyrimidines using Nickel-incorporated fluorapatite encapsulated iron oxide nanocatalyst (Fe₃O₄@FAp@Ni) and evaluated their antibacterial activities [25]. In the present study, based on our ongoing experience in synthesizing the biologically active compound [26-29], we decided investigate synthesis of indoleto the some pyrido[2,3-d]pyrimidine hybrids by using γ-Fe₂O₃@HAp@PBABMD@Cu as magnetically separable nanocatalyst.

Recently, in our laboratory, Copper(II) complex covalently anchoring 3,3'-((1E,1'E)-(1,2phenylenebis(azanylylidene))bis(methanylylidene))-diphenol) (PBABMD) on HAp coated magnetite particles as heterogeneous magnetic nanocatalyst (γ -Fe₂O₃@HAp@PBABMD@Cu) (Fig. 2) was prepared, identified and applied to synthesize of pyrrole-pyrido[2,3*d*]pyrimidines [29]. The high efficiency of this green and recyclable nanocatalyst encouraged us to use this catalyst for

Fig. 2. γ-Fe2O3@HAp@PBABMD@Cu magnetic nanocatalyst.

the synthesis of pyridopyrimidine-indole hybrids.

EXPRIMENTAL

An electrothermal 9100 device was applied for measuring melting points. Carlo-Erba EA1110CNNO-S analyzer was used for elemental analysis and approved with the calculated values. Fourier transform-infrared (FT-IR) spectra were recorded by a VERTEX 70 Brucker spectrometer, mixed with KBr, and pressed into pellets, scanning from 4000 to 400 cm⁻¹. The ¹H NMR and ¹³C NMR spectra were run on a Bruker DRX-300 spectrometer operating at 300 and 75 MHz in DMSO-d6 as solvent and TMS as an internal standard. Chemical shifts for ¹H and ¹³C NMR were expressed in ppm downfield from tetramethylsilane. All solvents, reagents and chemicals used in this research were purchased from Merck and were used without any more refinement.

General Procedure for the Preparation of Indolepyrido[2,3-*d*]pyrimidine Derivatives

An equimolar amount of thiouracil or 6-amino-*N*,*N*dimethyluracile (1) (1.0 mmol), aromatic aldehyde (2) (1.0 mmol), 3-cyanoacetylindole (3) (1.0 mmol), and γ -Fe₂O₃@HAp@PBABMD@Cu MNPs (20 mg) was stirred in refluxing EtOH (5 ml) until disappearance of the starting materials (monitored by TLC (petroleum ether:EtOAc: MeOH, 8:4:1)). After completion of the reaction, the catalyst was separated by applying an external magnet. The reaction mixture was cooled to room temperature and added 4 ml of distilled water to the reaction mixture, the reaction mixture was filtered and the resulting solid recrystallized from EtOH to furnish the desired pure product.

Spectra Data of New Products

1,2,3,4-Tetrahydro-7-(1*H***-indol-3-yl)-5-(3-nitrophenyl)-4-oxo-2-thioxopyrido[2,3-***d***]pyrimidine-6-carbonitrile (4a). Orange-yellow powder; FT-IR (KBr): v (cm⁻¹) 3440, 3400, 3100, 2208, 1656, 1525, 1423, 1346, 858, 804, 756 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 7.24-7.34 (m, 2H, Ar-H), 7.56 (d, J = 7.2, 1H, Ar-H), 7.80-7.86 (m, 1H, Ar-H), 7.94 (d, J = 7.8 Hz, 1H, Ar-H), 8.38-840 (m, 2H, Ar-H), 8.68 (d, J = 3.3 Hz, 1H, =CH-NH), 9.02 (d, J = 7.2, 1H), 12.13 (d, J = 3.3 Hz, 1H, NH), 12.55 (s, 1H, NH), 13.64 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 100.9, 106.3, 112.5, 112.6, 118.3, 122.1, 123.7, 123.7, 124.0, 124.6, 126.5, 130.1, 131.7, 135.3, 136.9, 138.3, 147.8, 153.4, 156.0,** 158.3, 159.8, 176.8. Anal. Calcd. for C₂₂H₁₂N₆O₃S (440.43): C, 59.99; H, 2.75; N, 19.08. Found: C, 59.86; H, 2.67; N, 19.22.

1,2,3,4-Tetrahydro-7-(1*H*-indol-3-yl)-5-(2-nitrophenyl)-4-oxo-2-thioxopyrido[2,3-*d*]pyrimidine-6-carbonitrile (4b). Orange-Yellow powder, FT-IR (KBr): v (cm⁻¹) 3447, 2930, 2209, 1646, 1516, 1429, 1340, 747 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 7.28-7.33 (m, 2H, Ar-H), 7.57-7.60 (m, 1H, Ar-H), 7.69-7.75 (m, 1H, Ar-H), 7.86 (t, *J* = 8.25 Hz, 1H, Ar-H), 8.10 (d, *J* = 8.4 Hz, 2H, Ar-H), 8.20-8.22 (m, 1H, Ar-H), 8.45 (d, *J* = 2.1 Hz, 1H, =CH-NH), 12.31 (s, 1H, NH), 12.06 (s, 1H, NH),13.52 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 98.0, 111.7, 112.9, 114.9, 116.9, 119.8, 121.8, 122.1, 123.8, 125.6, 128.2, 129.1, 129.9, 130.8, 135.3, 137.1, 154.8, 151.7, 157.3, 162.8, 165.5, 175.1. Anal. Calcd. for C₂₂H₁₂N₆O₃S (440.43): C, 59.99; H, 2.75; N, 19.08. Found: C, 59.84; H, 2.69; N, 18.92.

5-(3-Chlorophenyl)-1,2,3,4-tetrahydro-7-(1*H*-indol-3yl)-4-oxo-2-thioxopyrido[2,3-*d*]pyrimidine-6-carbonitrile (4d). Pale yellow powder, FT-IR (KBr): v (cm⁻¹) 3249, 3213, 2287, 2192, 1645, 1571, 1510, 1442, 1097, 1008, 838, 798 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 7.12-7.29 (m, 3H, Ar-H), 7.37-7.47 (m, 2H, Ar-H), 7.50-7.59 (m, 1H, Ar-H), 8.08-8.14 (m, 1H, Ar-H), 8.23 (d, *J* = 1.5 Hz, 1H, =CH-NH), 9.14(s, 1H, Ar-H), 12.17 (s, 1H, NH), 12.70 (s, 1H, NH), 13.21 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 93.2, 112.6, 107.3, 116.6, 116.7, 121.8, 122.0, 123.4, 125.4, 126.7, 127.8, 128.6, 129.9, 131.1, 133.7, 136.6, 144.9, 151.2, 152.8, 161.5, 163.6, 172.7. Anal. Calcd. for C₂₂H₁₂ClN₅OS (429.88): C, 61.47; H, 2.81; N, 16.29. Found: C, 61.58; H, 2.72; N, 16.12.

5-(2-Chlorophenyl)-1,2,3,4-tetrahydro-7-(1*H*-indol-3yl)-4-oxo-2-thioxopyrido[2,3-*d*]pyrimidine-6-carbonitrile (4e). Yellow powder, FT-IR (KBr): v (cm⁻¹) 3232, 2248, 1641, 1564, 1523, 1438, 1093, 1004, 873, 790, 752 cm⁻¹. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 7.16-7.31 (m, 4H, Ar-H), 7.50-7.54 (m, 2H, Ar-H), 8.14-8.17 (m, 1H, Ar-H), 8.39 (d, *J* = 2.1 Hz, 1H, =CH-NH), 9.14 (s, 1H, Ar-H), 12.20 (s, 1H, NH), 12.92 (s, 1H, NH), 13.70 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 78.7, 108.1, 112.6, 112.9, 114.9, 116.9, 121.5, 122.1, 122.8, 123.8, 125.6, 126.7, 129.9, 136.0, 136.6, 137.1, 143.0, 151.2, 154.8, 162.1, 166.2, 175.1. Anal. Calcd. for C₂₂H₁₂ClN₅OS (429.88): C, 61.47; H, 2.81; N, 16.29. Found: C, 61.32; H, 2.93; N, 16.13.

1,2,3,4-Tetrahydro-7-(1*H***-indol-3-yl)-1,3-dimethyl-2,4-dioxo-5-phenylpyrido**[**2,3-***d*]**pyrimidine-6-carbonitrile (4p).** Yellow powder, FT-IR (KBr): v (cm⁻¹) 3317, 3104, 2929, 2198, 1647, 1500, 1428, 833, 749 cm^{-1. 1}H NMR (300 MHz, DMSO-d₆): δ (ppm) 3.16 (s, 3H, CH₃), 3.55 (s, 3H, CH₃), 7.14-7.23 (m, 2H, Ar-H), 7.26-7.33 (m, 2H, Ar-H), 7.38-7.40 (m, 3H, Ar-H), 7.50-7.55 (m, 1H, Ar-H), 7.61 (d, J = 8.7 Hz, 1H, Ar-H), 7.93 (d, J = 3.0, 1H, =CH-NH), 11.88 (s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) δ_C; 28.2, 30.6, 89.0, 107.7, 112.8, 112.8, 120.2, 120.8, 121.1, 122.2, 122.7, 125.7, 127.5, 127.5, 127.6, 128.0, 128.4, 129.1, 129.3, 136.6, 144.7, 145.7, 151.3, 161.2. Anal. Calcd. for C₂₄H₁₇N₅O₂ (407.42): C, 70.75; H, 4.21; N, 17.19. Found: C, 70.61; H, 4.10; N, 17.08.

RESULTS AND DISCUSSION

The catalyst y-Fe2O3@HAp@PBABMD@Cu was

synthesized and characterized by FT-IR, SEM and ICP analysises which matched with our previously reported data [29]. The FT-IR spectra for γ-Fe₂O₃@HAp@PBABMD@Cu MNPs is shown in Fig. 3. The absorption peaks at 478 and 567 cm⁻¹ were referred to the Fe-O bonds. The signals at 567 and 603 are due to the bending vibration O-P-O which were overlapping with the Fe-O stretching bands. The signal at 1045 and 1100 cm⁻¹ showed the presence of phosphate group $(PO_4^{3-}, P-O)$. The signals at 1633 cm⁻¹ and 3445 cm⁻¹ were assigned to C=N and O-H groups respectively. The ICP-OES analysis showed that 4.65% of Cu was anchored on catalyst γ-Fe₂O₃@HAp@PBABMD@Cu. ICP-OES data show that there is about 0.72 mmol g^{-1} of Cu in γ -Fe₂O₃@HAp@PBABMD@Cu. The Fe-SEM image of the catalyst nanocrystallites (16-22 nm) is presented in Fig. 4. The spherical morphology was proved in the Fe-SEM image of the catalyst.

In the present research, we have developed the one-pot three-component approach for the synthesis of indolepyrido[2,3-*d*]pyrimidine hybrids (4a-p) by the reaction of thiouracil or 6-amino-*N*,*N*-dimethyluraciles (1), aldehyde (2), and 3-cyanoacetylindole (3) in the presence of γ -Fe₂O₃@HAp@PBABMD@Cu as nanocatalyst in EtOH

Fig. 3. FT-IR spectra of γ-Fe₂O₃@HAp@PBABMD@Cu MNPs.

Fig.
4.
Fe-SEM
image
of
magnetic
γ

Fe₂O₃@HAp@PBABMD@Cu
MNPs.

</

under reflux condition (Scheme 1). This procedure afforded the corresponding indole-pyrido[2,3-*d*]pyrimidines (4a-p) in lower reaction times (18-40 min) and high yields (82-95%).

In the initial experiments, the starting compounds 1 and 3 were prepared [30,31] and to obtain optimized reaction conditions, synthesis of 1,2,3,4-tetrahydro-7-(1*H*-indol-3-yl)-5-(3-nitrophenyl)-4-oxo-2-thioxopyrido[2,3-*d*] pyrimidine-6-carbonitrile (4a) was performed by the reaction

Table 1. Synthesis of 4a in Various Solvents andTemperatures in the Presence of γ -Fe₂O₃@HAp@PBABMD@Cu^a

Entry	Solvent	Temperature	Time	Yield
		(°C)	(min)	(%) ^b
1	EtOH	Reflux	20	92
2	MeOH	65	60	70
3	DMF	110	52	81
4	CH ₃ CN	80	87	58
5	H_2O	80	100	-
6	CH_2Cl_2	42	90	54

^aReaction conditions: In the presence of γ-Fe₂O₃@HAp@PBABMD@Cu (20 mg)/mmol substrate. ^bIsolated yields.

between 6-amino-2,3-dihydro-2-thioxopyrimidin-4(1*H*)-one (1 mmol) (1), 3-nitrobenzaldehyde (1 mmol) (2) and 3cyanoacetylindole (1 mmol) (3) as model reaction in the presence of γ -Fe₂O₃@HAp@PBABMD@Cu (20 mg). Different solvents and temperatures were screened to provide the desired product (Table 1). The results revealed that the reaction in refluxing EtOH is the most effective conditions (Entry 1). This reaction was also carried out in the presence of different catalysts and without catalyst (Table 2).

The Amount of catalyst was also studied and the result demonstrated the shortest reaction times (20 min) and highest yields (92%), was obtained using 20 mg of

Scheme 1. Synthesis of indole-pyrido[2,3-d]pyrimidines in the presence of γ -Fe₂O₃@HAp@PBABMD@Cu

 γ -Fe₂O₃@HAp@PBABMD@Cu per mmol substrate (Table 3). To demonstrate the efficiency of this catalyst, in Table 4, this method was compared with the reported procedure, and the results showed the superiority of this

catalyst.

A number of indole-pyrido[2,3-*d*]pyrimidine derivatives were synthesized under optimal conditions, which are listed in Table 5. The results revealed that arylaldehydes with both

Entry	Catalyst	Amount of catalyst (mol%)	Time (min)	Yield (%) ^b
1	-	-	20 h	-
2	DABCO	20	120	52
3	DBU	20	240	40
4	P-TSA	20	90	60
5	AcOH	10	80	81
6	CuCl ₂	10	60	70
6	γ-Fe ₂ O ₃ @HAp@PBABMD@Cu [18] ^c	1.5 (20 mg)	20	92

Table 2. The Effect of Different Catalysts on the Synthesis of 4a^a

^aReaction conditions: reflux in EtOH. ^bIsolated yields. ^cAccording to ICP analysis, the amount of Cu in 1 g of catalyst is ~ 0.72 mmol.

Table 3. Optimization of the Amount of	γ-Fe ₂ O ₃ @HAp@PBABMD	@Cu in the Synthesis of 4a ^a
--	--	---

Entry	Amount of γ-Fe ₂ O ₃ @HAp@PBABMD@Cu mgmmol ⁻¹ substrate	Time	Yields
		(min)	(%) ^b
1	10	35	84
2	20	20	92
3	25	20	92

^aReaction conditions: reflux in EtOH. ^bIsolated yields.

Table 4. Comparison of the Efficiency of Present Catalyst with some Reported Ones in the Synthesis of 4a

Entry	Catalyst	Temperature	Solvent	Time	Yield
		(°C)			(%) ^a
1	γ-Fe ₂ O ₃ @HAp@PBABMD@Cu	Reflux	EtOH	20 min	92 [This work]
2	$lnCl_3$	Reflux	EtOH	6 h	77 [32]
3	Fe ₃ O ₄ @FAp@Ni	60 °C	EtOH	1 h	90 [18]
4	CuCl ₂	reflux	EtOH	2 h	60

^aIsolated yields.

Product	Х	R	Ar	Time	Yield	M.p. (°C)	
				(min)	(%) ^a		
					_	Found	Reported
							[Ref.]
4a	S	Н	$3-O_2NC_6H_4$	20	92	298-301	-
4b	S	Н	$2-O_2NC_6H_4$	23	87	303-304	-
4c	S	Н	$4-ClC_6H_4$	25	90	304-305	>300 [32]
4d	S	Н	$3-ClC_6H_4$	18	95	305-306	-
4e	S	Н	$2-ClC_6H_4$	19	93	307-310	-
4f	S	Н	$4-OHCC_6H_4$	18	87	300-301	>300 [32]
4g	S	Н	$4-MeC_6H_4$	32	89	301-303	>300 [32]
4h	S	Н	$4-MeOC_6H_4$	27	84	303-304	>300 [32]
4i	S	Н	$4-BrC_6H_4$	22	89	297-300	>300 [32]
4j	S	Н	$4-NO_2C_6H_4$	18	82	302-303	>300 [32]
4k	Ο	CH ₃	$4-NO_2C_6H_4$	28	91	309-310	>300 [18]
41	Ο	CH ₃	$4-MeC_6H_4$	35	95	311-314	>300 [18]
4m	Ο	CH ₃	$4-MeOC_6H_4$	40	87	306-308	>300 [18]
4n	Ο	CH ₃	$4-ClC_6H_4$	27	91	305-308	>300 [18]
4o	Ο	CH_3	$3-BrC_6H_4$	29	93	299-301	>300 [18]
4p	Ο	CH ₃	C_6H_5	32	83	309-312	-

Table 5. Synthesis of Indole-pyrido[2,3-d]pyrimidine Derivatives (4a-p) Under Optimized Conditions

^aIsolated yields.

electron-deficient and electron-rich substituents afford desired products in high yields (82-95%) and lower reaction times (18-40 min). The structures of all the new products were established on the basis of their analytical and spectroscopic data (FT-IR, ¹H NMR and ¹³C NMR).

The plausible mechanism of the present multi-component reaction is outlined in Scheme 2. Intermediate A is initially formed from the condensation of 3-cyanoacetylindole and any aldehyde using the magnetic nano-catalyst γ -Fe2O3@HAp@PBABMD@Cu. The Michael addition of 6-amino-N,N-dimethyluracyl to arylidine A, produces intermediate B. Cyclisation, dehydration, remove of the catalyst and oxidation of intermediate B, furnishes final product (4a-p). At all the stages, γ-Fe₂O₃@HAp@PBABMD@Cu accelerates various stages of

the reaction as Lewis acid catalyst.

The reusability of the nanocatalyst and its effect on the efficiency of the synthesis of 4a was also investigated (Fig. 5). The catalytic activity of this magnetic nanocatalyst was almost retained without a significant loss of activity after 6 cycles. To recover the catalyst, the nanocatalyst was removed from the reaction mixture with an external magnet and then washed with hot ethanol to remove impurities, and then was dried and reused.

CONCLUSIONS

In this research, a new and green procedure for the preparation of some pyridopyrimidine derivatives with indole substitution in ethanol, under reflux conditions

Scheme 2. The plausible mechanism for the synthesis of indole-pyrido[2,3-d]pyrimidine in the presence of γ -Fe₂O₃@HAp@PBABMD@Cu

and in the presence of γ -Fe₂O₃@HAp@PBABMD@Cu nanocatalyst was presented. Studies have shown that the reaction with the γ -Fe₂O₃@HAp@PBABMD@Cu nanocatalyst gives a high yields of the desired products in

short reaction times. The catalyst is recyclable and after 6 runs in the synthesis of the model product, showed no significant changes in its activity. The varieties of products, high efficiency and catalyst recyclability are the advantages

Fig. 5. The reusability of the catalyst in the synthesis of 4a under optimized conditions.

of this green procedure for the synthesis of indole-pyrido[2,3*d*]pyrimidines hybrids.

ACKNOWLEDGMENTS

The authors are grateful to the Research Council of University of Guilan for the partial financial support of this research work.

REFERENCES

- A.B.A. El-Gazzar, H.N. Hafez, Bioorg. Med. Chem. Lett. 19 (2009) 3392.
- [2] B.S. Hurlbert, B.F. Valenti, J. Med. Chem. 11 (1968) 708.
- [3] D. Bouzard, In Antibiotics and Antiviral Compounds, K. Krohr, H. A. Kirst, H. Maag (Eds.), VCH: Weinheim, 1993, pp. 168.
- [4] H.A. Parish, R.D. Gilliom, W.P. Purcell, R.K. Browne, R. F. Sprik, H.D. White, J. Med. Chem. 25 (1982) 98.
- [5] S. Youssif, S. El-Bahaie, E. Nabih, J. Chem. Res. (S) (1999) 112.

- [6] E. Kretzchmar, Pharmazie 35 (1980) 253.
- [7] J.R. Piper, G.S. McCaleb, J.A. Montgomery, R.L. Kisliuk, F.M. Sirotanks, J. Med. Chem. 29 (1986) 1080.
- [8] A. Gangjee, O. Adair, S.F. Queener, J. Med. Chem. 42 (1999) 2447.
- [9] S. Furuya, T. Ohtaki, Eur Pat Appl, EP 0 608565 A1, [Chem Abstr 121 (1994) 205395].
- [10] D. Heber, C. Heers, U. Ravens, Pharmazie 48 (1993) 537.
- [11] J.M. Quintela, C. Peinador, L. Botana, M. Estevez, R. Riguera, Bioorg. Med. Chem. 5 (1997) 1543.
- [12] Y. Sakuma, M. Hasegawa, K. Kataoka, K. Hoshina, N. Yamazaki, T. Kadota, H. Yamaguchi, PCT Int Appl 1989, WO 91/05785, [Chem Abstr 115 (1991) 71646].
- [13] M.M. Ghorab, A.Y. Hassan, Phosphorus Sulfur Silicon Relat. Elem. 141 (1998) 251.
- [14] S.N. VanderWel, P.J. Harvey, D.J. McNamara, J.T. Repine, P.R. Keller, J.III. Quin, R.J. Booth, W.L. Elliott, E.M. Dobrusin, D.W. Fry, P.L. Toogood, J. Med. Chem. 48 (2005) 2371.
- [15] M. Mamaghani, R. Hossein Nia, J. Heterocyclic Chem. 54 (2017) 1700.
- [16] W.J. Houlihan, W.A. Remers, R.K. Brown, Indoles: Part I; Wiley: New York, NY, 1992.
- [17] R.J. Sundberg, The Chemistry of Indoles; Academic: New York, NY, 1996.
- [18] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. -M. Basset, Chem. Rev. 111 (2011) 3036.
- [19] S.R. Kale, S.S. Kahandal, M.B. Gawandeb, R.V. Jayaram, RSC. Adv. 3 (2013) 8184.
- [20] B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, Arabian J. Chem. 12 (2019) 1234.
- [21] M. Tadic, S. Kralj, M. Jagodic, D. Hanzel, D. Makovecb, Appl. Surf. Sci. 322 (2014) 255.
- [22] M. Nasrollahzadeh, Molecules 23 (2018) 2532.
- [23] A. Ali, H. Zafar, M. Zia, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Nanotechnol. Sci. Appl. 9 (2016) 49.
- [24] S.N. Sun, C. Wei, Z.Z. Zhu, Y.L. Hou, S.S. Venkatraman, Z.C. Xu, Chin. Phys. B, 23 (2014) 037503.
- [25] S. Dastmard, M. Mamaghani, L. Farahnak, M. Rassa,

Polycycl. Aromat. Compd. 42 (2022) 1747.

- [26] M. Mohssenimehr, M. Mamaghani, F. Shirin, M. Sheykhan, F. Azimian Moghaddamb, Chinese Chem. Lett. 25 (2014) 1387.
- [27] P. Jahanshahi, M. Mamaghani, F. Haghbin, R. Hossein Nia, M. Rassa, J. Mol. Struct. 1155 (2018) 520.
- [28] F. Tavakoli, M. Mamaghani, M. Sheykhan, Appl. Organometal. Chem. 33 (2019) e5083.
- [29] E. Saberikhah, M. Mamaghani, N. Mahmood, J. Chin.

Chem. Soc. 68 (2021) 902.

- [30] P. Crepaldi, B. Cacciari, M.C. Bonache, G. Spalluto, K. Varani, P.A. Borea, I.V. Kügelgen, K. Hoffmann, M. Pugliano, C. Razzari, M. Cattaneo, Bioorg. Med. Chem. 17 (2009) 4612.
- [31] J. Slatt, I. Romero, J. Bergman, Synthesis 16 (2004) 2760.
- [32] P. Seetham Naidu, P. Borah, P.J. Bhuyan, Tetrahedron Lett. 53 (2012) 4015.