Regular Article

Org. Chem. Res., Vol. 7, No. 1, 54-60, March 2021. DOI: 10.22036/ORG.CHEM.2021.255031.1257

Catalyst-free Preparation of 4H-1,3,4-Oxadiazines in H₂O

S. Mozafari Vanani and M.A. Amrollahi*

Department of Chemistry, College of Science, Yazd University, P. O. Box: 89195-741, Yazd, Iran (Received 29 October 2020, Accepted 28 Apil 2021)

This report provides a description of a novel and efficient procedure for the synthesis of substituted 4H-1,3,4-oxadiazines *via* reaction of various vinyl cyanides and acetohydrazide in H₂O under catalyst-free conditions. The remarkable advantages are the simplicity of the experimental procedures, high yields, and avoidance of organic solvents. Products were characterized by melting point, IR, ¹H and ¹³C NMR spectra, and elemental analysis. The desired products were obtained in >85% yields.

Keywords: Acetohydrazide, Catalyst-free, Cyclization, Oxadiazines, Vinyl cyanides, Aqueous

INTRODUCTION

Cyclization has been widely used to construct carbocyclic or heterocyclic organic compounds [1-4]. Heterocyclic compounds containing five- or six-membered rings are successfully used as medicines [5-7]. Among heterocyclic compounds, nitrogen-containing heterocycles have attracted a great attention because of their unique chemical and physical properties [8]. Synthesis of azaheterocyclic compounds is of considerable interest owing to the wide-ranging biological activity of this series of compounds as medicinal and pesticidal agents. Moreover, most of them are extremely versatile building blocks for the manufacture of the bioactive compounds in pharmaceutical drug design and agrochemical industry [9-11]. Sixmembered heterocyclic rings with three hetero atoms are not found broadly in nature, but they have superfine use in the most important fields. Thus, developing new heterocyclic compounds as medicinals are still an important region of interest in the life science [12]. Oxadiazines are an important category of heterocyclic compounds which they are considered in biological systems. They are oxa analogs of nucleosides-6-oxadihydro uracil and display important application in biological systems [13-15]. A diversity of biological effects is associated with oxadiazines bearing

heteroatoms at 1,3,4 positions [16]. Given such intrinsic merits, various synthetic methods have been reported for the synthesis of oxadiazines such as condensation reaction of cyanoacetylhydrazine with ω -bromo(4-methyl) acetophenone [5], reaction of acetophenones with acid hydrazide in the presence of PhI(OH)OTs [17], condensation reaction of cyanoacetylhydrazine with ω -bromoacetophenone [18], [2+4] cycloaddition of allenoates with N-acyldiazenes [19], [3+3] cycloaddition of aza-oxyallylic cations with nitrile oxides [20], threecomponent reaction of cyclohexyl isocyanide, hydrazides and cyclic ketones in the presence of SBA-Pr-SO₃H [21], dehydrosulfurization of the 4-chloro-N-(2,2,2-trichloro-1isothiocyanatoethyl)benzamide under the action of dicyclohexylcarbodiimide by [22], and the cyclocondensation of phenylhydrazones catalyzed by triethylamine [23]. Though these methods are quite satisfactory in many instances, most of them are associated with limitations such as harsh reaction conditions, application of toxic organic solvents as reaction media, and long reaction times. Accordingly, due to the biological importance of these kinds of heterocycles, an efficient, environmentally clean, commercially available, and cheap synthetic method is still a need. To the best of our knowledge, there have been no reports on the reaction of vinyl cyanides with acetohydrazide for the preparation of 4H-1,3,4-oxadiazine derivatives. In this work, we report a

^{*}Corresponding author. E-mail: mamrollahi@yazduni.ac.ir

Mozafari Vanani & Amrollahi/Org. Chem. Res., Vol. 7, No. 1, 54-60, March 2021.

Scheme 1. Synthesis of 4H-1,3,4-oxadiazine derivatives

simple, efficient, cost-effective, and inexpensive method for the preparation of 2-methyl-5-aryl-4H-1,3,4-oxadiazine under catalyst-free conditions at the reflux temperature in H₂O (Scheme 1).

EXPERIMENTAL

General Procedure

A mixture of vinyl cyanides (1 mmol), and acetohydrazide (0.074 g, 1 mmol) was stirred in H_2O (2 ml) at reflux temperature for desired time (Table 2). The completion of the reaction was monitored by TLC. After cooling, the reaction mixture was poured onto crushed ice (10 g). The resulting precipitate was filtered under suction and then recrystallized from EtOH to afford the pure product.

2-Methyl-5-phenyl-4*H***-1,3,4-oxadiazine.** Yield 160 mg (92%) as an withe crystal. m.p.: 139-142 °C; ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 2.50 (s, 3H, CH₃), 7.35-7.45 (m, 3H, Ar), 7.65-7.75 (m, 2H, Ar), 7.80 (s, 1H, H-6), 10.40 (s, 1H, NH). ¹³C NMR spectrum (125 MHz, CDCl₃), δ , ppm: 20.40, 127.10, 128.70, 130.00, 133.90, 143.10, 166.10, 174.40. IR (neat), \bar{v} , cm⁻¹: 3188 (N-H), 3081 (=C-H), 2974 (C-H), 1672 (C=N), 1604 and 1465 (C=C), 1339 (C-N), 1134 (C-O). Anal. Calcd. Found, %: C, 68.6; H, 5.9; N, 16.3. C₁₀H₁₀N₂O. Calculated, %: C, 68.95; H, 5.79; N, 16.08.

2-Methyl-5-(4-nitrophenyl)-4*H***-1,3,4-oxadiazine.** Yield 208 mg (95%) as an withe crystal. m.p.: 203-206 °C; ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 2.50 (s, 3H, CH₃), 7.90 (d, *J* = 8.8 Hz, 2H, Ar-H), 8.00 (s, 1H, H-6),

8.40 (d, J = 8.8 Hz, 2H, Ar-H), 10.00 (s, 1H, NH). ¹³C NMR spectrum (125 MHz, DMSO- d_6), δ , ppm: 20.65, 124.44, 127.97, 140.60, 143.59, 148.03, 166.44, 172.76. IR (neat), $\bar{\nu}$, cm⁻¹: 3180 (N-H), 3080 (=C-H), 2954 (C-H), 1679 (C=N), 1581 (C=C), 1519 and 1387 (NO₂), 1333 (N-H), 1154 (C-O). Anal. Calcd. Found, %: C, 55.0; H, 3.9; N, 19.1. C₁₀H₉N₃O₃. Calculated, %: C, 54.79; H, 4.14; N, 19.17.

2-Methyl-5-(3-nitrophenyl)-4*H***-1,3,4-oxadiazine.** Yield 208 mg (95%) as an yellow crystal. m.p. 240-244 °C; ¹H NMR spectrum (500 MHz, CDCl₃+co-solvent DMSO*d*₆), δ , ppm: 2.70 (s, 3H, CH₃) 7.20-7.25 (m, 1H, Ar-H), 7.60-7.85 (m, 3H, Ar-H), 8.00 (s, 1H, H-6), 10.84 (s, 1H, NH). ¹³C NMR spectrum (125 MHz, DMSO-*d*₆), δ , ppm: 20.66, 124.23, 130.77, 133.14, 136.63, 140.63, 143.64, 148.69, 166.38, 172.61. IR (neat), $\bar{\nu}$, cm⁻¹: 3183 (N-H), 3094 (=C-H), 2968 (C-H), 1681 (C=N), 1644 (C=C), 1522 and 1388 (NO₂), 1333 (C-N), 1136 (C-O). Anal. Calcd. Found, %: C, 54.8; H, 3.8; N, 19.4. C₁₀H₉N₃O₃. Calculated, %: C, 54.79; H, 4.14; N, 19.17.

2-Methyl-5-(2-nitrophenyl)-4*H***-1,3,4-oxadiazine.** Yield 190 mg (87%) as an yellow crystal. m.p.: 240-244 °C; ¹H NMR spectrum (500 MHz, CDCl₃+co-solvent DMSO d_6), δ , ppm: 2.75 (s, 3H, CH₃) 7.25-7.70 (m, 4H, Ar-H), 8.20 (s, 1H, H-6), 10.95 (s, 1H, NH). ¹³C NMR spectrum (125 MHz, DMSO- d_6), δ , ppm: 20.64, 124.89, 128.54, 130.68, 133.82, 138.19, 141.43, 148.45, 166.36, 172.67. IR (neat), \bar{v} , cm⁻¹: 3183 (N-H), 3094 (=C-H), 2968 (C-H), 1681 (C=N), 1644 (C=C), 1522 and 1388 (NO₂), 1333 (N-H), 1136 (C-O). Anal. Calcd. Found, %: C, 54.6; H, 3.9; N, 19.0. C₁₀H₉N₃O₃. Calculated, %: C, 54.79; H, 4.14; N, 19.17.

2-Methyl-5-(4-(trifluoromethyl)phenyl)-4H-1,3,4-

oxadiazine. Yield 230 mg (95%) as an withe crystal. m.p.: 143-146 °C; ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 2.44 (s, 3H, CH₃), 7.65 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.80 (d, *J* = 8.0 Hz, 2H, Ar-H), 8.00 (s, 1H, H-6), 10.80 (s, 1H, NH). ¹³C NMR spectrum (125 MHz, DMSO-*d6*), δ , ppm: 20.65, (121.07, 123.46, 125.63, 127.75), 126.07, 127.61, 127.93, 138.70, 141.23, 166.31, 172.63 ppm; IR (neat), \bar{v} , cm⁻¹: 3192 (N-H), 3080 (=C-H), 2961 (C-H), 1681 (C=N), 1604 (C=C), 1519 and 1394 (NO₂),1323 C-N), 1286 (C-O). Anal. Calcd. Found, %: C, 54.8; H, 3.9; N, 11.5. C₁₁H₉F₃N₂O. Calculated, %: C, 54.55; H, 3.75; N, 11.57.

5-(4-Chlorophenyl)-2-methyl-4*H***-1,3,4-oxadiazine.** Yield 188 mg (90%) as an withe crystal. m.p.: 153-154 °C; ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 2.44 (s, 3H, CH₃), 7.36 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.60 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.82 (s, 1H, H-6), 10.60 (s, 1H, NH); ¹³C NMR spectrum (125 MHz, DMSO-*d*₆), δ , ppm: 20.65, 128.66, 133.68, 134.47, 141.61, 144.70, 166.10, 172.43. IR (neat): $\bar{\nu}$, cm⁻¹: 3192 (N-H), 3080 (=C-H), 2961 (=C-H), 1681 (C=N), 1604 and 1394 (C=C), 1323 (C-N), 1134 (C-O). Anal. Calcd. Found, %: C, 57.2; H, 4.6; N, 13.7. C₁₀H₉CIN₂O. Calculated, %: C, 57.57; H, 4.35; N, 13.43.

2-Methyl-5-(p-tolyl)-4*H***-1,3,4-oxadiazine.** Yield 173 mg (92%) as an withe crystal. m.p.: 125-129 °C; ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 2.38 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 7.20 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.57 (d, *J* = 7.5 Hz, 2H, Ar-H), 7.84 (s, 1H, H-6), 10.50 (s, 1H, NH); ¹³C NMR spectrum (125 MHz, DMSO- *d*₆), δ , ppm: 20.67, 21.41, 127, 129.85, 132.04, 139.79, 143.01,165.88, 172.24. IR (neat), $\bar{\nu}$, cm⁻¹: 3184 (N-H), 3087 (=C-H), 2973 (C-H), 1667 (C=N), 1600 and 1506 (C=C), 1393 (C-N), 1133 (C-O) Anal. Calcd. Found, %: C, 69.9; H, 6.7; N, 14.9. C₁₁H₁₂N₂O. Calculated, %: C, 70.19; H, 6.43; N, 14.88.

4-(2-Methyl-4*H***-1,3,4-oxadiazin-5-yl)phenol.** Yield 171 mg (90%) as an withe crystal. m.p.: 249-252 °C; ¹H NMR spectrum (500 MHz, CDCl₃+co-solvent DMSO d_6), δ , ppm: 2.68 (s, 3H, CH₃), 6.21 (broad, 2H, Ar-H), 6.89 (d, J = 7.5 Hz 2H, Ar-H), 8.87 (s, 1H, H-6), 10.20 (s, 1H, NH). ¹³C NMR spectrum (125 MHz, DMSO- d_6), δ , ppm: 20.67, 116.10, 126.80, 128.72, 143.26, 145.90, 159.45, 172.98. IR (neat), \bar{v} , cm⁻¹: 3183 (N-H), 3087 (=C-H), 2968 (C-H), 1670 (C=N), 1606 and 1508 (C=C), 1348 (C-N), 1169(C-O). Anal. Calcd. Found, %: C, 63.4; H, 5.6; N, 14.6. $C_{10}H_{10}N_2O_2$. Calculated, %: C, 63.15; H, 5.30; N, 14.73.

5-(4-Methoxyphenyl)-2-methyl-4*H***-1,3,4-oxadiazine.** Yield 188 mg (92%) as an light yellow crystal. m.p.: 128-131 °C; ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm: 2.35 (s, 3H, CH₃), 3.82 (s, 3H, CH₃), 6.91 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.61 (d, *J* = 7.4, Hz 2H, Ar-H), 7.79 (s, 1H, H-6), 10.38 (s, 1H, NH); ¹³C NMR spectrum (125 MHz, DMSO*d*₆), δ, ppm: 20.69, 55.67, 114.69, 127.33, 128.59, 142.80, 160.89, 165.76, 172.13 ppm; IR (neat), \bar{v} , cm⁻¹: 3183 (N-H), 3087 (=C-H), 2968 (C-H), 1670 (C=N), 1606 and 1508 (C=C), 1390 (C-N), 1169 (C-O). Anal. Calcd. Found, %: C, 64.6; H, 5.7; N, 13.8. C₁₁H₁₂N₂O₂. Calculated, %: C, 64.69; H, 5.92; N 13.90.

RESULTS AND DISCUSSIONS

The 4H-1,3,4-oxadiazines were synthesized by the reaction of acetohydrazide and various vinyl cyanides under catalyst-free conditions. For optimizing the experimental conditions, the reaction between acetohydrazide and 2-benzylidenemalononitrile was considered as a model reaction. Initially, the effect of solvent on the reaction was studied (Table 1, entries 1-6) and water was found to be the best one. Next, the influence of the reaction time on the yield was investigated (Table 1, entries 7, 8). It was clear that the highest yield was produced when the reaction time was 25 min, although the yield did not improve to any greater extent when the reaction time was increased from 25 min to 30 min. We therefore chose 25 min as the reaction time. Finally, to find the optimum temperature, the reaction was conducted at 20, 60 °C, and at reflux temperature, which resulted in the isolation of the product in a trace amount, 50 and 92% yields, respectively (Table 1, entries 2, 9,10). Hence, the best condition employs the 1:1 mol ratio of acetohydrazide and 2-benzylidenemalononitrile at the reflux temperature over 25 min using water as a solvent.

The synthesized oxadiazine was characterized by FT-IR, ¹H, and ¹³C NMR spectra, m.p. and elemental analyses. The FT-IR spectrum of 2-methyl-5-phenyl-4*H*-1,3,4-oxadiazine showed a band for stretching vibration of N-H at 3188 cm⁻¹. The appearance signals at 3081, 2974 and1672 cm⁻¹ were assigned respectively to the stretching vibration of aromatic Mozafari Vanani & Amrollahi/Org. Chem. Res., Vol. 7, No. 1, 54-60, March 2021.

H	$\leq CN + N$	NHNH ₂		Me H
Entry	Solvent	Time (min)	Temp (°C)	Yield (%)
1	Solvent-free	25	Crushing	85
2	H_2O	25	Ref.	92
3	EtOH	25	Ref.	92
4	H ₂ O:EtOH (1:1)	25	Ref.	60
5	MeCN	25	Ref.	55
6	AcOEt	25	Ref.	40
7	H ₂ O	20	Ref.	90
8	H ₂ O	30	Ref.	92
9	H ₂ O	25	20	Trace
10	H_2O	25	60	50

 Table 1. Optimization of the Reaction Conditions for the Synthesis of

 2-Methyl-5-phenyl-4H-1,3,4-oxadiazine^a

^a2-Benzylidenemalononitrile (1 mmol), acetohydrazide (1 mmol).

C-H groups, methyl C-H groups, and the C=N bond of oxadiazine ring. The peaks at 1604, and 1465 cm⁻¹ were attributed to vibrational modes of C=C stretching vibration of the phenyl ring. The signals at 1339 and 1134 cm⁻¹ were also assigned to the stretching vibration of C-N and C-O groups, respectively.

The ¹H NMR spectrum of 2-methyl-5-phenyl-4*H*-1,3,4oxadiazine exhibited a sharp singlet at $\delta = 2.45$ ppm for CH₃ group on the oxadiazine ring and a multiplet signal at $\delta = 7.43$ -7.69 ppm for the 5 H atoms of the phenyl ring. The peaks at $\delta = 10.36$ and $\delta = 7.88$ ppm were assigned to the N-H and C-H groups of the oxadiazine ring, respectively. The ¹³C NMR spectrum of 2-methyl-5-phenyl-4*H*-1,3,4oxadiazine showed a signal at 20.0 ppm for the CH₃ group. The signal at 144.0 ppm attributed to the carbon atom of the oxadiazine ring. The carbon atom of the N=C-O group was recorded at 174.5 ppm, and finally, the peaks at 126.0-134.4 ppm were also assigned to the carbon atoms of the phenyl ring. The elemental analysis of 2-methyl-5-phenyl-4H-1,3,4-oxadiazine showed the existing of carbon (68.6%), hydrogen (5.9%), and nitrogen (16.3%), confirming the synthesis of the product. The melting point of 2-methyl-5-phenyl-4H-1,3,4-oxadiazine was also recorded (Table 2, entry 1).

To explore the generality and scope of this method, a wide variety of vinyl cianides and acetohydrazide were reacted under the optimized experimental conditions to afford the corresponding 4H-1,3,4-oxadiazines in excellent

Catalyst-free Preparation of 4H-1,3,4-Oxadiazines in H₂O/Org. Chem. Res., Vol. 7, No. 1, 54-60, March 2021.

R	\sim CN + Me	$\rm NHNH_2$ $H_2O/refluct catalyst-f$		Me H
Entry	R	Time (min)	Yield (%)	M.p.
1	C_6H_5	25	92	139-142
2	$4-NO_2C_6H_4$	15	95	203-206
3	$3-NO_2C_6H_4$	20	95	240-244
4	$2-NO_2C_6H_4$	25	87	210-213
5	$4\text{-}CF_3 C_6 H_4$	15	95	143-146
6	$4\text{-}ClC_6H_4$	25	90	153-154
7	4-Me C ₆ H ₄	100	92	125-129
8	4-OH C ₆ H ₄	120	90	249-252
9	4-OMe C ₆ H ₄	115	92	128-131

 Table 2. Reaction of Vinyl Cyanides with Acetohydrazide under Catalyst-free Conditions^a

yields (Table 2). The results revealed that the reaction for the (arylmethylidene)malononitriles bearing electronwithdrawing substituent such as NO2 and CF3 increased the rate of reaction (Table 2, entries 2-5). Aldehydes such as 4-methybenzaldeyde, 4-hydroxybenzaldeyde, and 4methoxybenzaldeyde are well tolerated and afforded excellent product yields (Table 2, entries 7-9). All the products were characterized by m.p. elemental analysis, FT-IR, ¹H and ¹³C NMR spectra. No reaction occurred between 2-cyano-3-phenylacrylamide, ethyl 3-phenyl-2cyanoacrylate or methyl 3-phenyl-2-cyanoacrylate, and acetohydrazide under optimized conditions (Table 2, entries 10-12).

Although the mechanism of the reaction has not been

established experimentally, the formation of the product can be rationalized as outlined in Scheme 2. In order to assess the efficiency and generality of this methodology, we compared the results of this method with some reported results in the literature. By comparing our results with the results depicted in Table 3, it was found that 4H-1,3,4oxadiazine can be synthesized in a shorter time in aqueous media.

CUNCLUSIONS

In summary, we have developed an improved and convenient procedure for the synthesis of 4H-1,3,4-oxadiazine through the reaction of (arylmethylidene)

^aReaction conditions: vinyl cyanide (1 mmol), acetohydrazide (1 mmol), H₂O (2 ml), reflux temperature.

Scheme 2. The proposed mechanism for the synthesis of 4H-1,3,4-oxadiazines

Entry	Catalyst/solvent/temp (°C)	Time	Yield (%)	Ref.
1	PPA/AcOH/140	6-8 h	60	1
2	HBr/AcOH/r. t.	18 h	95	2
3	PhI(OH)OTs/MeCN/reflux	6 h	74	17
4	-/1,4-dioxan/reflux	4 h	81	18
5	SBA-Pr-SO ₃ H/solvent-free/r.t.	2 h	90	21
6	catalyst-free/H ₂ O/reflux	25 min	92	This work

Table 3. Comparing Different Methods for the Synthesis of 1,3,4-Oxadiazines

malononitrile and acetohydrazide under catalyst-free conditions.

The remarkable advantages of this method are simple experimental procedure, appropriate reaction times, high yields, and the ease of product isolation.

ACKNOWLEDGMENTS

The authors thank the Research Council of Yazd University for the financial support.

Catalyst-free Preparation of 4H-1,3,4-Oxadiazines in H₂O/Org. Chem. Res., Vol. 7, No. 1, 54-60, March 2021.

REFERENCES

- K. Suhasini, T.V.P. Rao, V. Thirupathaiah, Curr. Sci. 52 (1983) 1133.
- [2] D.L. Trepanier, V. Spracmanis, D.S. Tharpe, P.E. Krieger, J. Heterocyclic Chem. 2 (1965) 403.
- [3] H. Emtiazi, M.A. Amrollahi, Helv. Chim. Acta 96 (2013) 2196.
- [4] A.R. Kartirizky, C.W. Rees, Comprehensive Heterocyclic Chemistry, Pergamon Press, New York, 1984.
- [5] R.M. Mohareb, A.A. Mohamed, Molecules 15 (2010) 3602.
- [6] R.P. Robinson, K.M. Donahue, J. Heterocycl. Chem. 31 (1994) 1541.
- [7] T. Naito, Chem. Pharm. Bull. 56 (2008) 1367.
- [8] N.R. Candeias, L.C. Branco, P.M. Gois, C.A.M. Afonso, A.F. Trindade, Chem. Rev. 109 (2009) 2703.
- [9] M.J. Kornet, J. Heterocycl. Chem. 33 (1996) 2047.
- [10] P.T. Berkowitz, R.A. Long, P.R.K. Dea Robins, T.R. Mathews, J. Med. Chem. 20 (1977) 134.
- [11] K.M. Khan, S. Rahat, M.I. Choudhary, A. Rahman, U. Ghani, S. Perveen, S. Khatoon, A. Dar, A. Malik, Helv. Chim. Acta. 85 (2002) 559.
- [12] A.R. Shaikh, M. Farooqui, R.H. Satpute, S. Abed, J.

Drug Deliv. 8 (2018) 424.

- [13] B. Monica, K. Sandra, G. Magdalena, Z. Branca, Acta Pharm. 53 (2003) 175.
- [14] F.M. Eissa, J. Chin. Chem. Soc. 56 (2009) 843.
- [15] S. Ke, X. Cao, Y. Liang, K. Wang, Z. Yang, Mini-Rev. Med Chem. 11 (2011) 642.
- [16] M.H. Abdellattif, O.A. Ali, M.H. Arief, M.A. Hussien, Curr. Org. Synth. 23 (2017) 369.
- [17] N.K. Nandkishore, J.M. Kondre, S.V. Gamapawar, S.V. Shinde, Synth. Commun. 39 (2009) 1.
- [18] R.M. Mohareba, Schatz, J. Bioorg. Med. Chem. 19 (2011) 2707.
- [19] Q. Zhang, L.G. Meng, J. Zhang, L. Wang, Org. Lett. 17 (2015) 3272.
- [20] G. Wang, R. Chen, S. Zhao, L. Yang, H. Guo, S. Sun, J. Wang, J. Domena, Y. Xing, Tetrahedron Lett. 59 (2018).
- [21] V. Fathi Vavsari, G. Mohammadi Ziarani, S. Balalaie, A. Badiei, F. Golmohammadi, S. Ramezanpour, F. Rominger, Chem. Select 2 (2017) 3496.
- [22] P.V. Zadorozhnii, I.O. Pokotylo, V.V. Kiselev, A.V. Kharchenko, O.V. Okhtina, Res. J. Pharm. Biol. Chem. Sci. 10 (2019) 1508.
- [23] P. Gurunanjappa, A.K. Kariyappa, Asian J. Chem. 29 (2017) 1687.